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A low-friction high-load thrust bearing and the human hip 

joint.   Part 2.  

 

A.H. McIlraith   
 

ABSTRACT  
 

The paper, McIlraith 2010, “A low-friction high-load thrust bearing and the 

human hip joint” (referred to below as PART 1), described a hydrostatic thrust 

bearing operating at a pressure of 130 MPa (1300 bar) and with a coefficient of 

friction  rising  to 0.004 in 6 days. It consisted of interleaved oil-coated Mylar and 

brass shims, each 0.1 mm thick. At this pressure the Mylar (Young’s modulus 3000 

MNm-2)* deforms to reveal a pool of lubricant bounded by contacting layers of shims 

at its edges where the pressure tapers off to zero. Thus, most of the load is borne by 

the oil so its effective Coulomb (slip-stick) friction is very low. It is suggested that the 

human hip joint, a bearing with similar geometry and lined with soft material, 

articular cartilage, operates at 1 bar in a manner similar to the plastic bearing 

operating at 1300 bar.  

*A more accurate value is 4000 MN m-2 and is used below.    

The original experiment was performed with a flat thrust bearing.    

Attention has been drawn to the possibility that in the postulated model of a thrust 

bearing lined with soft material the applied pressure might burst the structure open.  

An investigation of the conditions governing this ‘bursting’ effect has led to a deeper 

understanding and strengthening of the original model.  

This new knowledge has been applied successfully to the original experiment: to a 

suspected case of bursting: and to revealing the conditions needed for operation at 

atmospheric pressure.  

 

In addition, this work makes possible the rational design of a wide range of 

engineering thrust bearings with extremely low friction operating at pressures down to 

1 bar.  

 

 

INTRODUCTION 

 

My attention has been drawn by 

Professor Jeffery L. Tallon of Victoria 

University, N.Z. to an important effect 

illustrated in Figure 1 (right) which is a 

simplified version of figure 2 in PART 

1. It is that, as drawn, the pressure of 

the entrapped oil might be high enough 

to burst open the ends, a problem I had 

not considered.  

 

It follows that the present task is to find 

a condition such that the pressure is 

high enough to make the compression  

∇ ℓ of the soft material greater than its 

 

Lips 
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surface roughness R (for low friction operation), and yet low enough to avoid 

bursting.  

 

The aim of this work is not to get exact solutions, a difficult task, but to find 

approximate solutions which reveal the main dominating factors and the relationships 

between them. 

  

This paper is divided into two parts. The first part deals with the conditions needed 

for low friction operation. The second part deals with bursting. 

 

CONDITIONS FOR LOW FRICTION IN FLAT THRUST BEARINGS 
 

We know from the original experiments on a flat thrust bearing comprised of 

interleaved shims of brass and Mylar immersed in high viscosity oil, PART 1, that the 

Coulomb (slip-stick) friction opposing rotation of the bearing was very low. Even 

after 6 days with the original pressure P0 at 130 MPa (1300 bar), it had built up to 

only 0.004 with no sign of bursting.  

 

Therefore, we must have had an extensive pool of oil deeper than the roughness of the 

opposing surfaces to allow low-friction operation. 

 

Also this pool must have been bounded by a dam strong enough to withstand the 

above pressure, yet thin enough to offer minimal opposition to rotation between 

opposing rubbing surfaces. There was no bursting so the outwards movement q of the 

dam due to the oil pressing against it must have been less than its thickness t. 

 

This situation is well portrayed by Figure 4. (Figure 1 is in Part 2, Figures 2 and 3 are 

in Part 1 while Figure 4 is in Part 2.) 
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The present task is to find under what circumstances similar behaviour can be 

exhibited at various pressures down to atmospheric pressure.   

 

The first part of the model being developed is shown in Figure 4. It is similar to 

Figure 2 (Part 1) but with much less compression of the soft material. 

It consists of two solid circular cylinders, A and B, of radius r. Each is lined with soft 

elastic material, MA and MB, of thickness ℓ.  

 

Between A and B, oil at pressure PF causes compression ∇ ℓ of the soft material,   

 i.e    ∇ ℓ=  ℓ PF / Y.     PF = F / r2 where F is the applied axial force. Y is                       

Young’s modulus of the soft material.  

 

At the edges of A and B the pressure falls to zero so vertical lips of length ∇ ℓ of soft 

material are formed.  

 
                                                                                              
Does this model fit the original experiment?  
 

In the original experiment very low friction and no bursting were experienced.   

 

Operating conditions were:  

PF (=P0 )=130 MPa ; Y=4000 MNm-2; R = 2.5 x 10-4 mm (measured); ℓ = 0.1 mm. At 

this pressure ∇ ℓ (=PF . ℓ )  =  130 x 0.1 mm This is greater than the measured value of   

                                  Y             4000 

the surface roughness R by the factor PF x ℓ   = 130  x  0.1 x   1         = 13  

                                                              Y x R      4000            2.5 x 10-4 
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Thus at P0 = 130 MPa, ∇ ℓ is 13 times larger than R so there is very low friction. 

                                                                                                                                                                                                                                                                                                                                                                                                    

In the case of the human hip the soft material is articular cartilage which has Y lying 

in the range 0.5 to 1.0 MNm-2. Therefore, with R=2.5 x 10-4 mm, with ℓ =1mm, with  

PF = 0.1 MPa, and with Y = 1.0 MNm-2,                                         

PF x ℓ / RY = 0.1x106 x 1 /( 2.5 x 10-4 x 106 )  =  0.1 x104 /2.5 =  400                                          

 

                                                                                                                                                                                                       

Thus, assuming the hip joint is a flat bearing, we find ∇ ℓ is 400 times larger than R so 

there is very low friction there.  

 

FLAT BEARING AT 1 BAR 

  
For an engineer aiming to make a flat bearing using soft material for low friction and 

operating near atmospheric pressure we reduce PF to 0.1 MPa (1 bar). For low 

friction, the compression ∇ ℓ must be greater than the surface roughness R,  

i.e. PF ℓ  > R or   PF ℓ  > 1    

       Y                 Y R 

Available soft materials  will have similar values of R and Y to those of Mylar, so it is 

simpler to change the value of ℓ to achieve the above inequality. Let ℓ=20 mm. Then, 

for the engineer the ratio PF x ℓ becomes 2.  

                                           YR 

This value of ℓ is probably OK from an engineering point of view. 

 

Now we deal with the question of bursting.   

 

CONDITIONS FOR FORMATION OF A STABLE POOL OF OIL WITH NO 

BURSTING  

 

The oil presses horizontally against these lips causing their ends to move outwards a 

distance q. For stability or no bursting, q must be less than the thickness t of the dam. 

 

Treatment of Lips as Cantilevers 
 

We note that each lip resembles a cantilever, a well-known type of beam in 

mechanical engineering. A particular form of cantilever is a beam of length L which 

is held rigidly at one end and bends under its own weight. This allows us to adapt a 

standard expression for the deflection of the end of such a cantilever, with distributed 

weight replaced by distributed pressure. In this case, to a first approximation, we treat 

a lip as a cantilever of length L held rigidly at the surface of the entrapped oil (so that 

L= ∇ ℓ) and bending under distributed pressure. By this means we transform a 

difficult problem into one which is accurate enough for present purposes.  

 

A true cantilever is solid and is held rigidly, so that there is no movement at its base 

when it is loaded. The cantilever postulated here is made of soft material and is held 

by the same soft material with the result that its effective base is a small distance 

below the surface of the oil. 
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More importantly, with changing pressure, a small rotational movement  about its 

base occurs. This is taken into account below by modifying the standard expression 

for a cantilever bending under its own weight.  

 

In the case of a cantilever of constant cross section bending under its own weight, the 

standard expression for it is given by     

 q = (m L⁴ )/(8YI)                                                                                                          

where  
q is the deflection at its end 

m = weight per unit length of the cantilever  

L is the length of the cantilever 

Y is Young's modulus of the cantilever   

I is the moment of inertia of the cross section of the cantilever  

I = bt³/12                                                                                                                  

where b is the width of the cantilever and t is its depth.   

 

Now replace distributed weight by distributed pressure.  

The total force acting on  

the cantilever due to pressure PF is PF bL  

m = PF bL = PF b                                                                                                                                                        

              L  



q=  PF bL4 =  PF  bL412   =  12 PF L
4   =1.5 PF L

4                                                     

8YI          8Ybt3            8Yt3             Y  t3 

  

The relative displacement of the cantilever at its end is given by 

        

q/t  =   1.5 PF  (L
4/t4

 )

Y     
But, as  noted above, to a first approximation L = ∇ ℓ                                                                                                                                                                                  

                         

q/t =   1.5 PF  ∇ ℓ 4                                                                                                                                                                                                                                                                  

Y      t4 

This is a general expression for the movement at the end of a cantilever acted on by a 

distributed pressure.       

                                                                    

                          
                                                                                                                                                                                                                                                                                                                                                     
ORIGINAL EXPERIMENT (Part 1) 
 

According to this theory, which treats the lips as cantilevers, we get no bursting 

provided PF is less than the bursting pressure PB.. 

PB  =  1 x Y x (t4 / ∇ ℓ4 ).               
            1.5                                 

                           

                                                                                                                                                                                                                                            
The values used for PB are those recorded in the original experiment. 

 w or t (as used here) = 0.28mm and 

 ∇ ℓ = h = 3.3 x 10-3mm (corrected for larger value of Young’s modulus – see above).  
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This analysis is correct for that part of the soft cantilever  
entirely surrounded by fluid. To take into account the rotational effect noted above, 

we use the modified expression q/t = 1.5 PF (L4 /t4 + L/t) 

                                                                Ys 

These components behave quite differently. The first leads to  

PB/P0 = 1.06 x 109 where P0 is the operating pressure of the original experiment. 

The second leads to PB/P0 = 20.52. 

It acts by rotating the soft cantilever as a whole through an angle  so that the added 

movement at its free end is L. So   

q/t = L / t = (1.5PF / Ys) x L/t . Bursting occurs when L = t . Then  

1 = (1.5 PB  / Ys) x 1 or   
              

 PB = Ys/1.5  =  4000/1.5 = 2667 M Pa  

 

 PB / P0 =  2667 / 130 = 20.52    

 

It is assumed above that the soft cantilever is held by a block of material of modulus 

Ys.  In fact it is held less strongly, with the result that  is a little larger and PB/Po is 

slightly smaller.     

 

              

  

  

 

 

FIGURE 1 

 

See Figure 1, above.  

PB = 2667 MPa (as for the original experiment). 

 

Figure 1, as drawn, has  t   = 1.0 and ∇ ℓ  =  3 

                                   ∇ ℓ                 ℓ       4 

 

The pressure P3 needed to produce Figure 1 is given by  

P3  = ∇ ℓY = 3 x4000 = 3000 MPa 

          ℓ        4 

This exceeds PB. 

                                                  

Therefore bursting is bound to occur, and figure 1, as drawn, represents a non-

physical situation.  

 

 

An aside 

The model proposed in Part1 assumes that there is lateral leakage of fluid through the 

articular cartilage. Experimental evidence (Lewis and McCutchen,1959, Gwynn et al, 

2000) shows that the cartilage is honeycombed with non-communicating pores which 

are oriented perpendicularly to the bone. Therefore, contrary to the statement made in 

Part 1, section 4.1, lateral leakage through the cartilage does not occur. Thus, in 
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effect, the action of the cartilage at the boundary is closely similar to that of the Mylar 

in the original experiment, so the above treatment is justified.  

 
CONCLUSION 

 

The treatment of the lips as cantilevers has enabled the conditions governing bursting 

to be expressed in terms of their dimensions and their Young’s moduli. This, along 

with the expression for low friction operation and the treatment of the hip joint as a 

flat bearing, has put on a firm footing the suggestions by McIlraith (2010) for a 

radically new model of human and animal synovial joints. 

 

In addition, this work makes possible the rational design of a wide range of 

engineering thrust bearings with extremely low friction operating at pressures down to 

1 bar.  

 

On the basis of the findings recorded here we can say that the necessary conditions for 

a very low friction flat thrust bearing are: 

 

1. That the two halves of the bearing be coated with a soft material which 

deforms under the applied pressure by more than the surface roughness.   

2. At the boundary of the bearing where the pressure falls to zero, contacting 

layers of soft material form a dam strong enough to withstand this pressure yet 

thin enough to offer minimal opposition to rotation between opposing rubbing 

surfaces.   

 

If the pressure is too low the deformation of the soft material is less than the surface 

roughness. If it is too high the dam is ruptured, i.e. bursting occurs.  
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